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Abstract 

Introduction:  Novel screening tests used to detect a target condition are compared against either a reference stand‑
ard or other existing screening methods. However, as it is not always possible to apply the reference standard on the 
whole population under study, verification bias is introduced. Statistical methods exist to adjust estimates to account 
for this bias. We extend common methods to adjust for verification bias when multiple tests are compared to a refer‑
ence standard using data from a prospective double blind screening study for prostate cancer.

Methods:  Begg and Greenes method and multiple imputation are extended to include the results of multiple 
screening tests which determine condition verification status. These two methods are compared to the complete 
case analysis using the IP1-PROSTAGRAM study data. IP1-PROSTAGRAM used a paired-cohort double-blind design to 
evaluate the use of imaging as alternative tests to screen for prostate cancer, compared to a blood test called prostate 
specific antigen (PSA). Participants with positive imaging (index) and/or PSA (control) underwent a prostate biopsy 
(reference standard).

Results:  When comparing complete case results to Begg and Greenes and methods of multiple imputation there 
is a statistically significant increase in the specificity estimates for all screening tests. Sensitivity estimates remained 
similar across the methods, with completely overlapping 95% confidence intervals. Negative predictive value (NPV) 
estimates were higher when adjusting for verification bias, compared to complete case analysis, even though the 95% 
confidence intervals overlap. Positive predictive value (PPV) estimates were similar across all methods.

Conclusion:  Statistical methods are required to adjust for verification bias in accuracy estimates of screening tests. 
Expanding Begg and Greenes method to include multiple screening tests can be computationally intensive, hence 
multiple imputation is recommended, especially as it can be modified for low prevalence of the target condition.
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Introduction
Screening trials are conducted to evaluate the success of 
a novel screening test method to detect the target con-
dition, when compared against the reference (“gold”) 
standard method or other existing screening methods of 
detecting the target condition [1].
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It is not always possible to carry out the reference 
standard on the whole population under study. The 
invasiveness or high cost of certain types of reference 
standard testing make them impractical or unethical for 
use on the whole population. Therefore, screening tests 
that are less invasive, and less expensive than the refer-
ence standard methods used in clinical practice can be 
first employed (screening test) to determine which par-
ticipants should undergo the definitive test (reference 
standard).

Binary screening tests yield either screen-positive or 
screen-negative results for detecting the condition of 
interest and a binary reference standard indicates pres-
ence or absence of the target condition. A reference 
standard method is assumed to yield perfect or near-
perfect detection; in reality many reference tests are the 
best test that one can use. A screen-positive result on the 
initial screening test would usually imply that a partici-
pant would undergo further condition verification (by the 
reference standard). This implies that condition verifica-
tion is more likely to be conducted in individuals with 
a positive screening test result, and verification is more 
likely to be absent for cases with a negative screening test 
result. This introduces verification bias in the diagnostic 
evaluation of a suitable screening test. In this paper, we 
will focus only on binary screening tests.

Accuracy measures such as sensitivity, specificity, nega-
tive predictive value (NPV) and positive predictive value 
(PPV) express how well screening tests under evalua-
tion are able to identify participants as having the target 
condition [2]. Calculating the sensitivity and specificity 
estimates, based only on those cases who have under-
gone condition verification, overestimates the sensitivity 
and underestimates the specificity of the screening test 
[3], due to the lack of information for participants who 
received a negative screening test result.

The unadjusted approach to tackle this type of problem 
is the “complete case analysis” approach [4]. However, 
this does not correct for verification bias, hence sensitiv-
ity estimates may be inflated, and specificity estimates 
may be deflated [5]. Several statistical methods have 
been proposed to correct for verification bias encoun-
tered in the design of this type of screening trial. The 
most commonly used methods are the one developed by 
Begg and Greenes [5] and multiple imputation [6]. Begg 
and Greenes proposed a method which relies on the key 
assumption that the chance of undergoing the reference 
standard depends only on observed variables (i.e. the 
screening test results) and not directly on unobserved 
condition status [5] – similar to the missing at random 
(MAR) assumption [7]. Empirical methods such as boot-
strapping are commonly employed to estimate confi-
dence intervals for accuracy estimates calculated by this 

method. The other common approach is to treat the con-
dition status of the non-verified participants as a miss-
ing data problem and implement a multiple imputation 
algorithm [8] to impute these missing condition statuses. 
This flexible approach allows for the inclusion of multi-
ple diagnostic tests, as well as prognostic factors which 
are known to predict condition status, under the MAR 
assumption [7].

There are various examples in the literature of using 
Begg and Greenes to adjust for verification bias when 
verification status only depends on a single screening test 
[9–11]. There are few examples of using this method and 
applying it to two screening tests that determine partici-
pant verification status [4]. When searching the litera-
ture, we could not find evidence of these methods being 
used for more than two screening tests.

The aim of this paper is to extend the Begg and Greenes 
method and the multiple imputation algorithm to adjust 
accuracy measures to account for verification bias, when 
verification depends on three independent screening 
tests. We use the data collected during the IP1-PROSTA-
GRAM study [12] to demonstrate the use of these meth-
ods when three screening tests are used, independently 
and in no prescriptive order, to determine whether a par-
ticipant should undergo condition verification or not and 
compare it to complete case analysis (where no adjust-
ment for verification bias is done). We compare accuracy 
measures (sensitivity, specificity, PPV and NPV) for each 
of the three screening tests, along with their correspond-
ing 95% confidence intervals, between the complete 
case method (unadjusted approach), Begg and Greenes 
method, and multiple imputation.

Material and methods
The clinical study: IP1‑PROSTAGRAM
IP1-PROSTAGRAM [12] was a prospective, blinded, 
population-based screening study for prostate cancer, 
conducted from October 2018 to August 2019. The novel 
screening methods were Magnetic Resonance Imag-
ing (MRI) and shearwave ultrasound which were used 
in parallel with traditional serum Prostate Specific Anti-
gen (PSA) (an existing screening test for prostate can-
cer). Participants underwent all three screening tests in 
no prescriptive order. If any one of  the three screening 
test results  were positive, participants were advised to 
undergo a biopsy for histological verification (reference 
standard) (see Appendix 1). The aim was for each patient 
to undergo all screening tests with the results of each test 
blinded. Operators of each screening test were blinded 
to the results of the other screening tests. Participants 
with positive results were informed that one or more test 
results were positive but not informed which test result 
was positive until study completion. All participants were 
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unblinded on study completion, including those who 
tested negative on all screening tests [12]. Condition sta-
tus, defined as presence or absence of clinically signifi-
cant prostate cancer, was determined by verification on 
biopsy. Additionally, and separately to the radiologist, 
a Computer Aided Detection (CAD) system was used 
for reading the MRI results for all patients. The primary 
definition, of general acceptance [13], for clinically signifi-
cant prostate cancer was Gleason ≥3 + 4 (Grade Group 
(GrG) ≥ 2) and is used in the IP1-PROSTAGRAM study 
application of the methods to adjust for verification bias. 
The study specific screen-positive thresholds which deter-
mined condition verification for the three screening tests 
were MRI (PIRADS [Prostate Imaging-Reporting and 
Data System]/ Likert) ≥ 3, ultrasound (US [Ultrasound 
Score] scoring system) ≥ 3 and PSA level ≥ 3.0 ng/ml.

IP1-PROSTAGRAM recruited 408 participants, of 
whom 403 had complete results for all screening tests 
(MRI, ultrasound and PSA). Five participants were 
excluded from this analysis as 3 were missing ultrasound 
results and 2 were missing MRI results. One hundred 
sixty-five patients had a positive result from at least one 
of the screening tests and went on to undergo a con-
firmatory biopsy for clinically significant prostate cancer. 
One patient, who had all three negative screening tests, 
underwent a confirmatory biopsy for clinically signifi-
cant prostate cancer because the CAD system identified 
a lesion which met the criteria to warrant a biopsy. Hence 
166/403 (41.2%) patients underwent a confirmatory 
biopsy.

Table  1 outlines the composition of the 237 partici-
pants who did not undergo condition verification in 
terms of screening test result combinations. The major-
ity of these participants had three negative screening 
test results (220/237; 92.8%). Seventeen participants had 
at least one positive screening test result but withdrew 
from the study and so never underwent a biopsy (non-
verified). Baseline demographics for these participants, 
who withdrew from the study (and so did not undergo a 
biopsy (non-verified)), were similar to the baseline demo-
graphics of the participants who had at least one positive 
screening test result and who did not withdraw (and so 
underwent a confirmatory biopsy (verified)). This is plau-
sibly because participants were blinded to their screening 
test results up until withdrawal.

Methods notation
R, S and T are screening tests which can be represented 
collectively in a vector Q = (R, S, T), where:

•	 R = 1, S = 1, T = 1 if the result is screen-positive for 
screening tests R, S, T, respectively,

•	 R = 0, S = 0, T = 0 if the result is screen-negative for 
screening tests R, S, T, respectively.

V is a participant’s verification status:

•	 V = 1 if the participant has undergone the reference 
standard,

•	 V = 0 if the participant has not undergone the refer-
ence standard.

D is a participant’s condition status:

•	 D  = 1 if the participant has the target condition 
(according to the reference standard result),

•	 D = 0 if the participant does not have the target con-
dition (according to the reference standard result).

Definitions
For the following definitions, it is assumed that the tar-
get condition status is operationalised by the reference 
standard result.

Sensitivity is the ability of a screening test, say (R), to 
correctly identify those participants who have the target 
condition (D = 1). That is, the probability that the screen-
ing test result is screen-positive, e.g. R = 1, given that the 
participant has the target condition (D = 1), hence sensi-
tivity of R = Pr(R = 1| D = 1). This would be calculated as 
the proportion of participants who have a screen-positive 
screening test result and have the target condition out of 
the total number of participants who have the target con-
dition, if there were no missing data.

Specificity is the ability of a screening test, say (R), to 
correctly identify those participants who do not have the 

Table 1  Screening test results for participants who did not 
undergo condition verification in the IP1-PROSTAGRAM trial

1 MRI/ultrasound/PSA = 1: screen-positive result
2 MRI/ultrasound/PSA = 0: screen-negative result
3 V = 0: did not undergo condition verification (reference standard)

Verification 
Status

MRI Ultrasound PSA Total

V = 0 0 0 0 220
1 0 0 5

0 1 0 5

0 0 1 1

1 1 0 3

1 0 1 1

0 1 1 2

1 1 1 0

Total 237
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target condition (D = 0). That is, the probability that the 
screening test result is screen-negative, e.g. R = 0, given 
that the participant does not have the target condition 
(D  = 0), hence specificity of R = Pr(R = 0| D = 0). This 
would be calculated as the proportion of participants 
who have a screen-negative screening test result and do 
not have the target condition out of the total number 
of participants who do not have the target condition, if 
there were no missing data.

PPV is the probability that the participant has the tar-
get condition (D = 1), given they had a screen-positive 
screening test result. So for test R we have (R = 1): PPV = 
Pr(D = 1| R = 1). This would be calculated as the propor-
tion of participants who have a screen-positive screen-
ing test result and have the target condition out of the 
total number of participants who have a screen-positive 
screening test result, if there were no missing data.

NPV is the probability that the participant does not 
have the target condition (D  = 0), given they had a 
screen-negative screening test result. For test R (R = 0): 
NPV = Pr(D = 0| R = 0). This would be calculated as the 
proportion of participants who have a screen-negative 
screening test result and do not have the target condi-
tion out of the total number of participants who have a 
screen-negative screening test result, if there were no 
missing data.

Methods to deal with verification bias
The following statistical methods to account for verifi-
cation bias in the calculation of accuracy measure esti-
mates can be implemented when condition verification is 
dependent on the results of multiple screening tests.

Complete case analysis (unadjusted approach)
Using this method, only participants who underwent the 
reference standard (verified) and have complete screen-
ing test and reference standard results are included in 
the analysis and all non-verified participants are omit-
ted from the analysis. Accuracy measures are calculated 
using data from those participants who underwent con-
dition verification, and so have complete screening test 
results and reference standard data.  95% confidence 
intervals for each of the accuracy measures are computed 
in the standard way [14].

Begg and Greenes for multiple screening tests
The application of Begg and Greenes for one screening 
test is already described [4, 5, 15]. This application has 
been extended to include two screening tests [4]. We will 
focus here on describing the application to three screen-
ing tests.

Begg and Greenes method uses observed proportions 
of those who have and do not have the target condi-
tion among the verified participants to calculate the 
expected number of those who have and do not have 
the target condition among those participants who did 
not undergo condition verification [4]. They proposed 
an empirical method [5] to correct for verification bias 
when there are incomplete data on condition status for 
those who had not undergone verification. This method 
[5] assumes that the prevalence of the target condi-
tion estimated in the subset of participants who are 
screen-negative and undergo verification applies to all 
screen-negatives [16]. By design, this assumption does 
not hold when all screen-negative participants do not 
undergo verification for the target disease. Hence, it is 
recommended, in practice, that a randomly selected 
proportion of participants with screen-negative results 
undergo verification by the reference standard [17].

The method relies on the MAR assumption [7]. 
When applied to multiple screening tests, this assump-
tion implies that within the strata of the combinations 
of the screening tests the distribution of participants 
is random and uses this logic to then compute the 
accuracy measures. Under the MAR assumption, ver-
ification status (V) and condition status (D) are con-
ditionally independent on observed variables [5]. That 
is, whether or not a participant undergoes the refer-
ence standard is not determined by the true condition 
status of the participant, but instead is conditional 
on observed variables, such as screening test results. 
Due to the assumed independence of V and D (MAR 
assumption), it follows that Pr(V| Q) = Pr(V| Q, D). 
From this, it also follows, that Pr(D| Q) = Pr(D| Q, V) 
and Pr(D| Q) = Pr(D| Q, V = 1), where V = 1 represents 
undergoing condition verification.

Then, by Bayes theorem for screening test R [4]:

where Pr(Q) and Pr(D| Q, V = 1) can be directly esti-
mated from the data.

De Groot et  al. [4] tabulated Begg and Greenes 
method for two screening tests. Verified and non-ver-
ified participant proportions are combined to create a 
completed “two-by-two” table as if all participants had 
received the reference standard. We tabulate (Table  2) 
the Begg and Greenes method for three screening tests 
that, combined, determine condition verification.

The MAR assumption [7] assumes that participants 
with a specific combination of screening test results 
who have not been verified would have shown a similar 
distribution of condition status, which is proportional, 

Pr (R|D, S,T ) =

∑
S

∑
T Pr (Q)Pr (D|Q,V = 1)

∑
Q Pr (Q)Pr (D|Q,V = 1)
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to those with the same specific combination of screen-
ing test results who were verified. By this, the number 
of non-verified participants with each combination of 
screening test results in Table 2 can be calculated:

a′ =
a

a+ b
× T0_000

b′ =
b

a+ b
× T0_000

c′ =
c

c + d
× T0_100

d′ =
d

c + d
× T0_100

e′ =
e

e + f
× T0_010

f ′ =
f

e + f
× T0_010

Table 2  Begg and Greenes method for three screening tests (R, S, T)

1 Three screening tests R, S, T:

Screen-positive result: R = 1, T = 1, and/or S = 1

Screen-negative result: R = 0, T = 0, and S = 0
2 V – Verification status:

V = 1 for verified participants (those who underwent the reference standard)

V = 0 for non-verified participants (those who did not undergo the reference standard).
3 D – Condition status:

D = 1 for those who have the target condition (according to the reference standard result)

D = 0 for those who do not have the target condition (according to the reference standard result).
4 T1_000, T1_100, T1_010, T1_001, T1_110, T1_101, T1_011, T1_111 are the total numbers of verified (V = 1) participants with each combination of screening test results. 
These totals can be found from the data. To satisfy the assumption that the prevalence of the target condition estimated in the subset of participants who are screen-
negative and undergo verification applies to all screen-negatives, T1_000 > 0 must hold
5 T0_000, T0_100, T0_010, T0_001, T0_110, T0_101, T0_011, T0_111 are the total numbers of non-verified (V = 0) participants with each combination of screening test 
results. These totals can be found from the data
6 a, b, c, d, e, f, g, h, I, j, k, i, m, n, o, p are the numbers of verified participants (V = 1) with each of the combinations of screening test results, with (D = 1) or without 
(D = 0) the target condition. These frequencies are known from the data
7 a’, b’, c’, d’, e’, f’, g’, h’, i’, j’, k’, l’, m’, n’, o’, p’ are numbers of non-verified participants (V = 0) with each of the combinations of screening test results, with (D = 1) or without 
(D = 0) the target condition. These frequencies are missing from the data, but can be estimated from the known values for the verified patients and the total numbers 
of non-verified patients with each combination of the screening test results

Screening Tests1 Condition Status3

Verification Status2 R S T D = 1 D = 0 Total

V = 1 0 0 0 a 6 b T1_0004

1 0 0 c d T1_100

0 1 0 e f T1_010

0 0 1 g h T1_001

1 1 0 i j T1_110

1 0 1 k l T1_101

0 1 1 m n T1_011

1 1 1 o p T1_111

V = 0 0 0 0 a’ 7 b’ T0_0005

1 0 0 c’ d’ T0_100

0 1 0 e’ f ’ T0_010

0 0 1 g’ h’ T0_001

1 1 0 i’ j’ T0_110

1 0 1 k’ l’ T0_101

0 1 1 m’ n’ T0_011

1 1 1 o’ p’ T0_111
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Then, combining Bayes theorem for, say, screening test R, the 
MAR assumption, and Table  2 frequency estimates, we can 
calculate the accuracy estimates for screening test R, where 
condition status (D) is operationalised by the result of the refer-
ence standard, and adjusting for verification bias we get:

g ′ =
g

g + h
× T0_001

h′ =
h

g + h
× T0_001

i′ =
i

i + j
× T0_110

j′ =
j

i + j
× T0_110

k ′ =
k

k + l
× T0_101

l′ =
l

k + l
× T0_101

m′ =
m

m+ n
× T0_011

n′ =
n

m+ n
× T0_011

o′ =
o

o+ p
× T0_111

p′ =
p

o+ p
× T0_111

Sensitivity = Pr (R = 1|D = 1, S,T ) =
c + c′ + i + i′ + k + k ′ + o+ o′

a+ a′ + c + c′ + e + e′ + g + g ′ + i + i′ + k + k ′ +m+m′ + o+ o′
,

Specificity = Pr (R = 0|D = 0, S,T ) =
b+ b′ + f + f ′ + h+ h′ + n+ n′

b+ b′ + d + d′ + f + f ′ + h+ h′ + j + j′ + l + l′ + n+ n′ + p+ p′
,

PPV = Pr (D = 1|R = 1, S,T ) =
c + c′ + i + i′ + k + k ′ + o+ o′

c + c′ + d + d′ + i + i′ + j + j′ + k + k ′ + l + l′ + o+ o′ + p+ p′
,

NPV = Pr (D = 0|R = 0, S,T ) =
b+ b′ + f + f ′ + h+ h′ + n+ n′

a+ a′ + b+ b′ + e + e′ + f + f ′ + g + g ′ + h+ h′ +m+m′ + n+ n′
.

Similarly, it is possible to calculate the accuracy meas-
ures for screening tests S and T (Appendix 2). Bootstrap-
ping [18] can be used to estimate the confidence intervals 
for the Begg and Greenes accuracy estimates [16].

Multiple imputation for multiple screening tests
Verification bias can be considered as a missing data 
problem [6]. Due to verification bias, the condition sta-
tus for those participants who did not undergo verifica-
tion is missing. By using a multiple imputation method, 
it is possible to impute the missing condition status, 
based on the results of the screening tests and the veri-
fied condition status [6, 8, 19]. A multiple imputation 
algorithm to impute missing condition status in non-
verified participants [8] can be applied to adjust accu-
racy measures for verification bias. First, the probability 
of recommendation for condition verification by refer-
ence standard depends on the results of the screening 
tests.

Imputation of missing condition status is conducted 
following the steps below:

1.	 Verification status is dependent on the results of the 
screening tests. To account for this, a logistic regres-
sion model is fitted for condition status (dichot-
omised D) on n dichotomised screening test results 
(Xi; i = 1, . . , n), for the subset of participants who 
underwent condition verification (V  = 1) where 
the fitted logistic regression model coefficients are 
defined as (βi; i = 1, . . , n).

2.	 For each non-verified participant (who did not 
undergo the reference standard, V = 0), the individ-
ual probability of having the target condition (D = 1) 
is estimated based on the screening test results (Xi; 
i = 1, . . , n), and the coefficients (βi; i = 1, . . , n) from 
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the fitted logistic regression model, using the inverse 
logistic function, and a random binary variable (0/1) 
will be drawn with this probability using the uniform 
distribution. This imputes the missing condition sta-
tus for the non-verified participants.

3.	 Accuracy measures (sensitivity, specificity, PPV, 
NPV) for each screening test are calculated, along 
with their 95% confidence intervals, for the complete 
screening population using the imputed condition 
statuses for non-verified participants (V  = 0), and 
recorded true condition statuses for verified partici-
pants (V = 1).

4.	 This process is repeated for m iterations, due to the 
implementation of the uniform distribution using the 
calculated predicted probability to impute the miss-
ing condition statuses for those participants who did 
not undergo the reference standard (V = 0). For each 
iteration the calculated test accuracy estimates and 
their 95% confidence intervals are stored.

5.	 The verification bias adjusted estimates are the mean 
values of all estimates from the m iterations.

6.	 95% confidence intervals are combined using 
Rubin’s rules [7], accounting for variation within and 
between the imputed datasets.

Multiple imputation for the IP1‑PROSTAGRAM results
In IP1-PROSTAGRAM, the number of dichotomised 
screening tests is n =3. It is important to consider the 
prevalence of positive results that are verified. In order 
to use binary logistic regression for the multiple imputa-
tion method the assumption based on the widely adopted 
minimal guideline criterion for sample size considera-
tions of 10 events per variables (EPV) [20–22] included 
in the model need to be considered. This is because logit 
coefficients suffer from small-sample bias [23, 24], lead-
ing to systematically overestimated associations. The 
estimation of logit coefficients by maximum likelihood 
is sometimes inaccurate when EPV is low. Firth’s correc-
tion [25] is a general approach to reducing small-sample 
bias in maximum likelihood estimation. Firth’s correction 
adds a penalty on the likelihood which removes a por-
tion of the small-sample bias anticipated by the maxi-
mum likelihood method. The penalty will tend to zero 
as the sample size increases [26]. Firth’s correction has 
been shown to reduce finite sample bias close to zero and 
reduce mean square error. Using simulation studies [26], 
it has been shown that the performance of logistic regres-
sion can be significantly improved using Firth’s correc-
tion when EPV is low.

Since in the IP1-PROSTAGRAM study the number 
of positive verified results was less than 10 per variable 
(dichotomised screening test result) Firth’s correction 
was used in the logistic regression. Moreover, due to the 

small number of patients with clinically significant pros-
tate cancer, we computed Wilson Score 95% confidence 
intervals using the method derived by Lott and Reiter 
[27], extending Rubin’s rules [7] to combine Wilson Score 
intervals after multiple imputation. To compute the 95% 
confidence intervals for sensitivity and specificity we 
used an effective sample size, as introduced and used by 
Li, Mehrotra and Barnard [28].

Results
Using the IP1-PROSTAGRAM study data [12], accuracy 
measures were calculated using the study specific screen-
positive thresholds which determined disease verification.

The complete case analysis only uses data for partici-
pants who underwent a confirmatory biopsy and have 
complete screening test results and histology results, 
hence it uses data for 166 participants (166/403, 41.2%).

Begg and Greenes and multiple imputation methods 
use data for all participants who had complete screening 
test results data whether they underwent a confirmatory 
biopsy or not (N = 403).

For Begg and Greenes all the different combinations 
of screening tests results were considered. Since we have 
results for three binary (screen-positive vs screen-nega-
tive) screening tests which determined verification status 
then we have 8 different combinations of screening test 
results (Table  2). For IP1-PROSTAGRAM, we assumed 
that R = MRI, S = ultrasound, T = PSA, D is the presence 
(D = 1) or absence (D = 0) of clinically significant cancer 
as determined by biopsy (reference standard) results, and 
V is whether a participant underwent biopsy (V = 1) or 
did not (V = 0). The number of participants in each cat-
egory for IP1-PROSTAGRAM is estimated using Table 2 
and is outlined in Table 4 (Appendix 3).

Using the multiple imputation method for verifica-
tion bias adjustment, we verified the independence of 
the three screening tests by studying the pairwise and 
three-way interactions in the logistic regression model. 
None of the interaction terms were statistically signifi-
cant, and so were not included in the final model. The 
final model only included main effects for each screen-
ing test. We repeated the imputation process for 100 
(m) iterations.

Since in the IP1-PROSTAGRAM data there are few 
events of clinically significant cancer (N  = 16/403), we 
have also used multiple imputation fitting a penalised 
logistic regression model (using the same steps 1–6 in 
the Methods section), with Firth’s correction, to predict 
prostate cancer status (D), from the results of the three 
screening tests (MRI, ultrasound and PSA) for those par-
ticipants who underwent a biopsy (V = 1). We repeated 
the imputation process for 100 (m) iterations, as in the 
non-penalised multiple imputation method.
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Table  3 presents the accuracy measures for the three 
screening tests (MRI, ultrasound and PSA) used in the 
IP1-PROSTAGRAM trial. Also included is the preva-
lence of positive screening results by each screening test, 
and prevalence of clinically significant prostate cancer for 
each of the verification bias adjustment methods.

In the complete case analysis, the number of partici-
pants with clinically significant prostate cancer was 16 
(9.6%; 95% CI: 5.6–15.2%). Taking non-verified partici-
pants into account using Begg and Greenes and multiple 
imputation (using standard logistic regression) inflates 
these estimates slightly as these methods predict that 
some non-verified participants would have had clini-
cally significant prostate cancer if they had undergone 

a confirmatory biopsy, based on their screening test 
results. For Begg and Greenes, the number of clinically 
significant prostate cancer cases was 18 (4.5%; 95% CI: 
2.6–6.8%). The number of cases of clinically significant 
prostate cancer using multiple imputation are similar to 
Begg and Greenes, i.e. 19 (4.7, 95% CI: 3.0–7.3%).

However, using multiple imputation with penalised 
logistic regression, the number of clinically significant 
prostate cancer cases remains the same as for complete 
case analysis, namely 16 (4.0%; 95% CI: 2.5–6.4%). Using 
multiple imputation with penalised logistic regression 
did not result in any of the missing condition statuses for 
non-verified participants being clinically significant pros-
tate cancer.

Table 3  Accuracy Measure (Sensitivity, Specificity, PPV and NPV) Estimates, with 95% Confidence Intervals, Adjusted for Verification 
Bias

Accuracy measure (sensitivity, specificity, PPV and NPV) estimates adjusted for verification bias, using complete cases analysis (unadjusted approach), Begg and 
Greenes using three screening tests, multiple imputation using three screening tests, and multiple imputation using three screening tests and penalised logistic 
regression (Firth’s correction) (IP1-PROSTAGRAM trial data [12])

Statistical Methods for Verification Bias Adjustment

Complete Case 
Analysis (Unadjusted 
Approach)
(N = 166)

Begg and Greenes 
using Three 
Screening Tests
(N = 403)

Multiple Imputation 
using Three 
Screening Tests 
(using standard 
logistic regression)
(N = 403)

Multiple Imputation 
using Three Screening 
Tests, using penalised 
logistic regression 
(Firth’s method)
(N = 403)

Prevalence of 
clinically significant 
prostate cancer

9.6%
(5.6 to 15.2%)

4.5%
(2.6 to 6.8%)

4.7%
(3.0 to 7.3%)

4.0%
(2.5 to 6.4%)

Screening Tests MRI Prevalence of posi‑
tive MRI

53.0%
(45.4 to 60.5%)

24.1%
(20.1 to 28.5%)

24.1%
(20.1 to 28.5%)

24.1%
(20.1 to 28.5%)

Accuracy measures Sens = 87.5%
(61.7 to 98.4%)
Spec = 50.7%
(42.4 to 58.9%)
PPV = 15.9%
(9.0 to 25.2%)
NPV = 97.4%
(91.0 to 99.7%)

Sens = 87.9%
(68.8 to 100.0%)
Spec = 78.9%
(74.8 to 82.9%)
PPV = 16.4%
(9.8 to 24.8%)
NPV = 99.3%
(98.0 to 100.0%)

Sens = 82.2%
(58.9 to 88.0%)
Spec = 78.8%
(74.4 to 82.6%)
PPV = 16.0%
(10.0 to 24.9%)
NPV = 98.9%
(97.0 to 99.6%)

Sens = 87.5%
(64.0 to 96.5%)
Spec = 78.6%
(74.2 to 82.4%)
PPV = 14.4%
(8.8 to 22.8%)
NPV = 99.3%
(97.6 to 99.8%)

US Prevalence of posi‑
tive ultrasound

51.2%
(43.6 to 58.8%)

23.6%
(19.7 to 28.0%)

23.6%
(19.7 to 28.0%)

23.6%
(19.7 to 28.0%)

Accuracy measures Sens = 56.3%
(29.9 to 80.2%)
Spec = 49.3%
(41.1 to 57.6%)
PPV = 10.6%
(5.0 to 19.2%)
NPV = 91.4%
(83.0 to 96.5%)

Sens = 56.3%
(31.7 to 78.3%)
Spec = 78.0%
(73.8 to 81.6%)
PPV = 10.7%
(5.2 to 18.1%)
NPV = 97.4%
(95.3 to 99.0%)

Sens = 53.7%
(31.6 to 74.3%)
Spec = 77.9%
(73.5 to 81.7%)
PPV = 10.6%
(5.9 to 18.7%)
NPV = 97.2%
(94.7 to 98.5%)

Sens = 56.3%
(33.2 to 76.9%)
Spec = 77.8%
(73.4 to 81.6%)
PPV = 9.5%
(5.1 to 17.0%)
NPV = 97.7%
(95.4 to 98.9%)

PSA Prevalence of posi‑
tive PSA

21.1%
(15.5 to 28.0%)

9.7%
(7.1 to 13.0%)

9.7%
(7.1 to 13.0%)

9.7%
(7.1 to 13.0%)

Accuracy measures Sens = 37.5%
(15.2 to 64.6%)
Spec = 80.7%
(73.4 to 86.7%)
PPV = 17.1%
(6.6 to 33.6%)
NPV = 92.4%
(86.4 to 96.3%)

Sens = 36.4%
(14.2 to 63.8%)
Spec = 91.6%
(88.5 to 94.0%)
PPV = 16.9%
(5.4 to 29.3%)
NPV = 96.8%
(94.5 to 98.4%)

Sens = 35.6%
(17.1 to 58.0%)
Spec = 91.5%
(88.4 to 93.9%)
PPV = 16.6%
(8.1 to 31.4%)
NPV = 96.6%
(94.2 to 98.0%)

Sens = 37.5%
(18.5 to 61.4%)
Spec = 91.5%
(88.3 to 93.9%)
PPV = 15.4%
(7.2 to 29.7%)
NPV = 97.3%
(95.0 to 98.5%)
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Discussion
We extended three commonly used statistical methods to 
adjust for verification bias when comparing three screen-
ing tests with a reference standard, when the reference 
standard is not always carried out.

We found that sensitivity estimates remained similar 
across the four methods, with overlapping 95% confi-
dence intervals, with a slight decrease in sensitivity esti-
mates when comparing complete case analysis to Begg 
and Greenes (for PSA) and multiple imputation using 
standard logistic regression (for all screening tests). This 
slight decrease in sensitivity estimates is expected as we 
know from the literature that sensitivity estimates are 
inflated when using the data only for those participants 
who undergo condition verification [5]. Particularly, sen-
sitivity estimates, and 95% confidence intervals, were 
similar for complete case analysis and multiple imputa-
tion using penalised logistic regression. None of the miss-
ing condition statuses of the non-verified participants 
were imputed as having clinically significant prostate 
cancer, the number of true positives, and those who had 
the target condition does not change between complete 
case and multiple imputation using penalised logistic 
regression. In fact, we did not expect sensitivity to vary 
dramatically, when adjusting for verification bias, due to 
the nature of the patient population recruited in the IP1-
PROSTAGRAM study [12] being the general population 
of men with no specific indication of likelihood of having 
the target condition.

The most noticeable difference is in the specificity 
estimates. From the literature, we know that specific-
ity estimates are deflated when only considering com-
plete cases [5]. When comparing complete case results 
to those of Begg and Greenes and both methods of 
multiple imputation (penalised and standard logistic 
regression), there is a significant increase in the speci-
ficity estimates for all screening tests. This increase in 
specificity estimates is statistically significant at a 5% 
significance level, demonstrated by non-overlapping 
95% confidence intervals, for all screening tests. The 
majority of the non-verified participants (Table 3) will 
contribute to the specificity estimates, rather than the 
sensitivity estimates by definition of these accuracy 
measurements. The specificity estimates calculated by 
Begg and Greenes and both methods of multiple impu-
tation are similar, with almost completely overlapping 
95% confidence intervals. Therefore, these methods are 
supportive of each other.

The point estimates for NPV are higher when using 
Begg and Greenes and both methods of multiple impu-
tation, compared to complete case analysis. The cor-
responding 95% confidence intervals around NPV 

estimates tend to be narrower when adjusting for verifi-
cation bias, compared to complete case analysis. These 
narrowed confidence intervals can be explained by the 
increase in information used in the NPV estimates for 
Begg and Greenes and both methods of multiple impu-
tation due to the use of the non-verified participants 
with incomplete data on condition status. The 95% 
confidence intervals for the NPV estimates compared 
across methods overlap, implying the difference in NPV 
estimates is not significant. Comparing PPV estimates 
and their corresponding 95% confidence intervals high-
lights the similarities of these estimates between the 
methods employed to adjust for verification bias. This 
is supported by the literature [15, 29, 30] which indi-
cates that PPV and NPV are not significantly affected 
by verification bias and hence reporting PPV and NPV 
without adjusting for verification bias is acceptable.

In our application of multiple imputation methods 
to the IP1-PROSTAGRAM data, using penalised logis-
tic regression does not significantly affect the accuracy 
measure estimates. The point estimates are similar 
when compared between the two methods of multiple 
imputation for all screening tests, with almost com-
pletely overlapping 95% confidence intervals.

The multiple imputation method could be extended 
to include baseline prognostic factors that are known to 
be associated with having clinically significant prostate 
cancer [6, 8], if justified by the value of EPV [26].

A limitation of Begg and Greenes method [5] is that 
it can only be applied when a subset of participants 
who are screen-negative (had negative results on all 
screening tests) undergo target condition verifica-
tion [16]. In practice it is recommended that a subset 
of screen-negative participants undergo verification 
by the reference standard [17] to avoid any issues with 
this assumption. In IP1-PROSTAGRAM, patients with 
all negative screening tests would not have undergone 
verification of target condition by design. However, one 
patient in the study underwent disease verification with 
three negative initial screening tests, and so Begg and 
Greenes method holds for these data.

Accuracy of reference standard
For the IP1-PROSTAGRAM study, we considered biopsy 
to be an accurate reference standard method for detec-
tion of clinically significant prostate cancer. The study 
was not setup to assess the accuracy of the reference 
standard diagnosis. The study did not conduct repeat 
biopsies, or long-term follow-up confirmation to under-
stand the degree to which the reference standard is 
accurate.
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Comparison to other previous published works
In 1998 Zhou X-H [31] reviewed developments in bias-
correction methods for studies on the accuracy of diagnos-
tic tests. His paper focuses on developments on maximum 
likelihood estimators and implementation of Begg and 
Greenes [5]. He considered the application of methods to 
a single binary diagnostic test, two correlated binary tests, 
ordinal diagnostic test and two ordinal-scale diagnostic 
tests. In 2006 Harel and Zhou [6] demonstrated the use of 
multiple imputation techniques to handle verification bias 
in screening trials. The authors introduce the application 
of different multiple imputation processes to address the 
problem of incomplete data. They then compare the accu-
racy estimates and confidence intervals for a single screen-
ing test calculated using five multiple imputation methods, 
and Begg and Greenes [5] using simulated datasets, and 
real-world examples in liver disease and breast cancer. 
Later, this analysis was reassessed by De Groot et al. [19], 
who demonstrate that Begg and Greenes [5] and multiple 
imputation [6] produce similar results when correcting for 
verification bias in the context of a single binary screening 
test. In our paper, we build on these principles, applying 
these methods to the case of three independent screening 
tests using data collected prospectively in the IP1-PROS-
TAGRAM study [12].

Cronin and Vickers [32] use a simulation study 
to compare the complete case method (unadjusted 
approach) to Begg and Greenes [5], comparing area 
under the curve (AUC) statistics, rather than accu-
racy estimates directly, when varying both the rate and 
mechanism of verification. They focus on single binary 
screening tests. They then apply these methods to real 
world examples in cervical cancer [33] and prostate 
cancer screening [9], as well as single photon emission 
computed tomography [34] to compare results of esti-
mates of AUC when using different methods to adjust 
for verification bias.

De Groot et al. [4] use a large dataset on patients with 
deep venous thrombosis [35] that underwent condition 
verification by the reference standard, and set the true 
condition status to missing based on various underlying 
mechanisms and a varying total number of missing val-
ues. The authors then compare the performance of dif-
ferent bias correction methods to the estimates using 
the completed dataset. They compare Begg and Greenes 
[5], using both one and two binary screening tests, and 
multiple imputation, and demonstrate that the Begg and 
Greenes and multiple imputation estimates are similar. 
We have extended these methods to incorporate three 
independent screening tests which determined whether 
or not a participant underwent condition verification.

More recently, Xue et  al. [16] use weighted estimat-
ing equations to investigate the accuracy of multiple 

screening tests as well as simultaneously compare 
results between screening tests while addressing veri-
fication bias. These equations are used in simulations 
and a real-world example of cervical cancer screening. 
This method does not appear to have been as widely 
used in the literature as Begg and Greenes, and multiple 
imputation.

We are not currently aware of any evidence of these 
methods being used for more than two screening tests.

Conclusions
Specificity and NPV estimates computed by the complete 
case method are prone to verification bias, and should 
be adjusted. Sensitivity estimates do not vary dramati-
cally when independent screening tests are carried out 
which give concordant negative results. All accuracy 
measure estimates calculated using Begg and Greenes 
and both methods of multiple imputation are similar for 
all screening tests. Expanding Begg and Greenes method 
to include multiple screening tests can be computation-
ally intensive. Since the estimates are similar to those cal-
culated using multiple imputation, this is the preferred 
method. If EPV is low in the binary outcome variable, 
penalised logistic regression (Firth’s correction) should 
be used to improve the performance of the multiple 
imputation algorithm. If EPV is sufficient, then the mul-
tiple imputation algorithm can be expanded to include 
more screening tests that determine condition verifica-
tion and prognostic factors that are associated with hav-
ing the target condition.
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